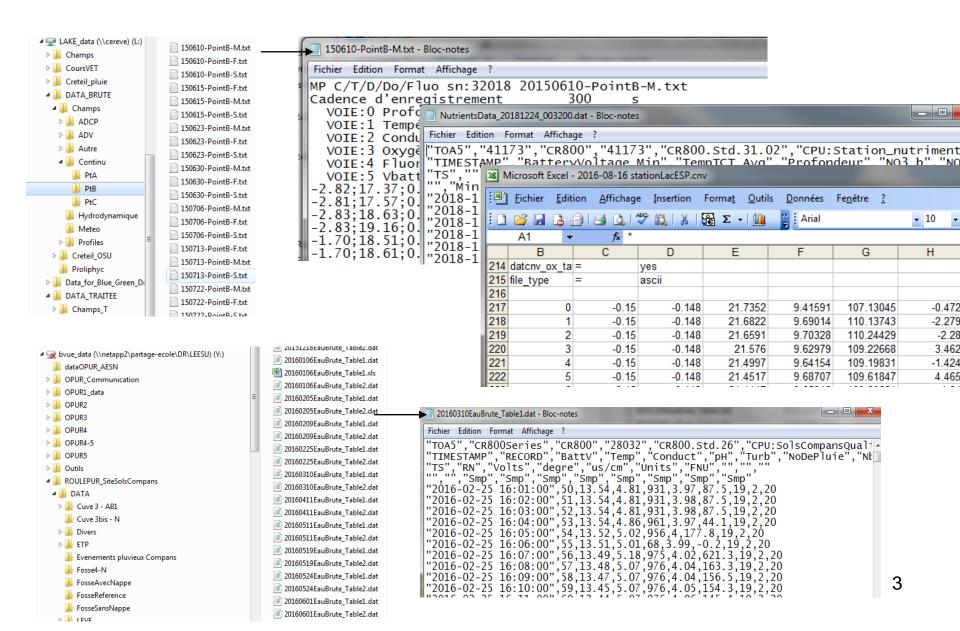


Bases de données relationnelles

Intérêt, stockage, structuration, accès

Généralités & la base 'data LEESU'

- 1) Organisation de données 'classique' historique.
- 2) Organisation avec une Base de Données ?
- 3) Principe
- 4) La base 'data' au LEESU



- 5) Les moyens d'accès
- 6) Types et flux de données
- 7) Gestion des données & Ouverture vers l'exterieur
- 8) le lien base 'data' <-> base 'matériels'

1) organisation 'historique' des données

classement hiérarchique de fichiers hétérogènes

1) organisation actuelle des données

Organisation hiérarchique de données fichiers

Inconvénients:

- hétérogénéité des formats: texte, csv, Excel, typé etc.
- format des données spécifiques de la source: entête, lignes/colonnes.
- Il faut connaitre tous les chemins, nommer le fichiers.
- pas de relation entre les données
- séries décomposées, de taille variable.
- gestion des droits d'accès lourd . gestion écriture/lecture simultané...

2) organisation avec une BD

Organisation et stockage de données sur des Bases de données relationnelles

- -les données sont centralisées (Bases) et sur un même niveau hiérarchique
- -séparation des données et de leurs attributs.
- -enrichissement avec des informations descriptives: Métadonnées
- -structuration des données => 'Tables' stockées dans une base (ou des bases)
- -relations entre les groupes (coté relationnelle)

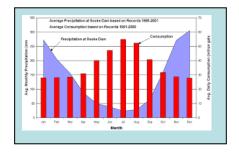
id_data	mesure	date_heure	b	C	i	commentaire					
1179695	1	2016-01-26 02:16:09	1.597	NULL	NULL	NULL	_				
1179696	1	2016-01-26 02:21:09	1.596	NULL	NULL	NULL					
1179697	1	2016-01-26 02:26:09	1.597	NULL	NULL	NULL	id mesure	nom	parametre instrument FK	projet_FK	zone FK
1179698	1	2016-01-26 02:31:09	1.597	NULL	NULL	NULL	1	Profondeur pt B M	11	0	2
1179699	1	2016-01-26 02:36:09	1.596	NULL	NULL	NULL	2	Temperature pt B M	2	0	2
1179700	1	2016-01-26 02:41:09	1.595	NULL	NULL	NULL	3	Conductivité pt B M	3	0	2
1179701	1	2016-01-26 02:46:09	1.594	NULL	NULL	NULL	4	O2 pt B M	4	0	2
1179702	1	2016-01-26 02:51:09	1.593	NULL	NULL	NULL	5	Fluorescence pt B M	5	0	2
			R	NIIII	NIIII	NIIII	6	Phycocyanine pt B M	_	0	2
Table: t_data					7	pH pt B M	7	0	2		
					8	Tension Bat pt B M	8	0	2		
					9	Profondeur pt A M	9	0	1		
					10	Temperature pt A M	10	0	1		

Table: t_mesures

2) organisation avec une BD

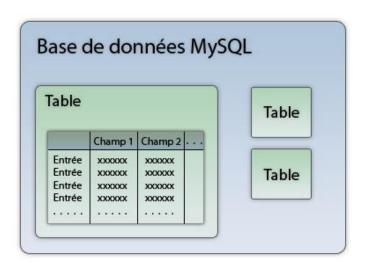
Organisation et stockage de données sur des Bases de données relationnelles

Avantages:


- -uniformisation du format des données
- -requêtes relationnelles entre plusieurs tables de données: exemple
 - à quelle période le pH > 8 sur 4 capteurs(4 tables) ?
 - quelle était la conductivité à ce moment la ?
 - on délocalise le trie des données sur le serveur
- -stockage de données > 8 millions de Tera Octets par table avec MySql: (théorie)
 - séries chronologiques entières...
- -un Système de Gestion de la Base de Données: (SGBDR) :
 - -L'accès simultané entre utilisateurs, Les droits.
 - -L'emplacement de mémorisation: Plus de gestion des chemins de stockage
 - -Accès à des données centralisées distantes

3) principe de fonctionnement

Producteur / Consommateur


Serveur

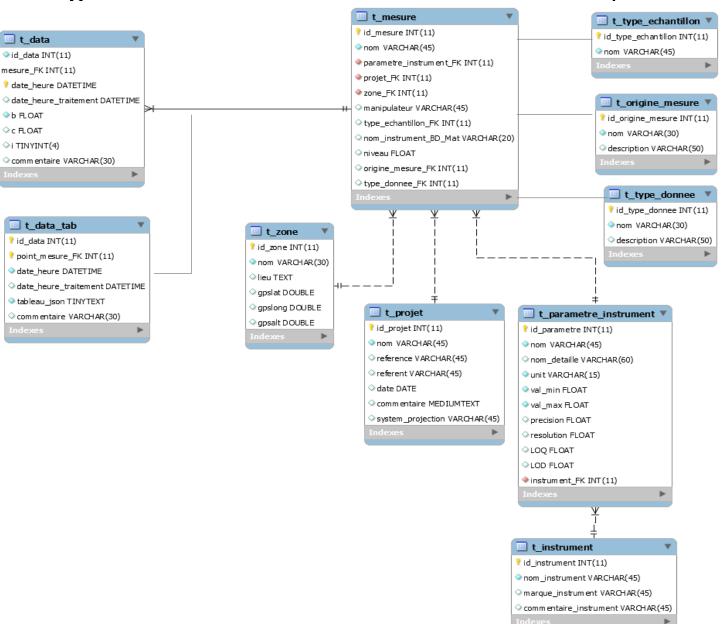
Client

Application:

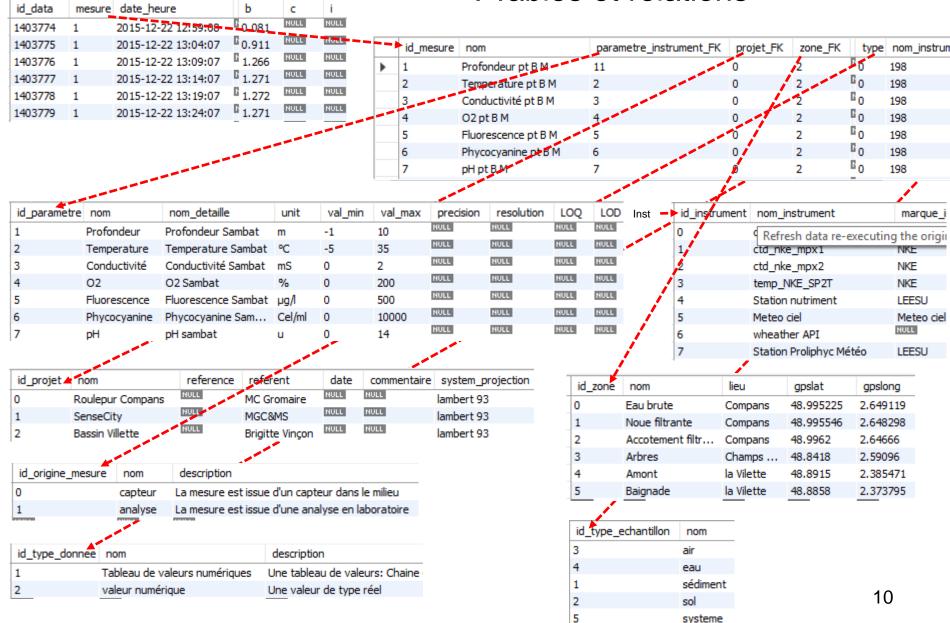
- lecture
- écriture

Système gestionnaire

SGBRD


3) principe de fonctionnement

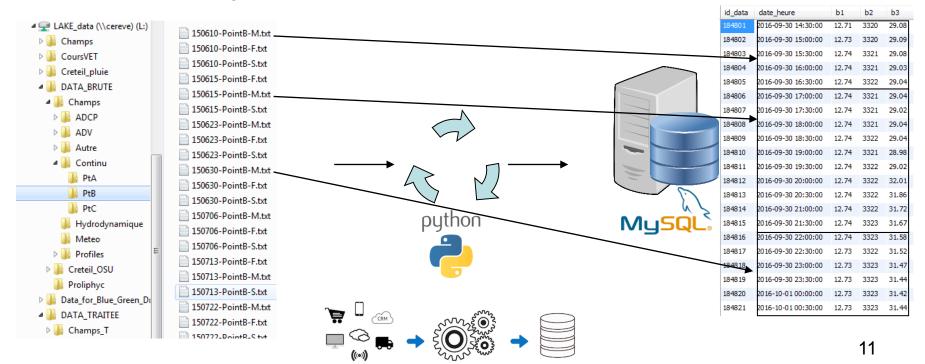
À propos des bases de données relationnelles


- Utilisation depuis : 1980
- Incontournables : industrie, e-Commerce, banque, recherche scientifique etc.
- Bases sur le marché: nombreuses, spécialisées ou non, payante ou non.
- Un choix de SGBDR: Mysqu. gratuite, la plus utilisée, bien documentée.
- Spécialité: concepts, terminologie, administration, sécurité
- Définir une structure adaptée et ouverte. Etablir des liaisons
- Langage d'accès : SQL Structured_Query_Language (optionnel)

4) une base 'data' au LEESU organisation de données: Modèle de conception

4) une base 'data' au LEESU

: Tables et relations


4) une base 'data' au LEESU

Ecriture des données sur la base

Automatiser:

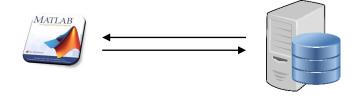
- -Conserver le dépôt manuel ou automatique(télétransmission) des fichiers brutes
- -Une routine automatique d'écriture des nouvelles données.
- -Il vérifie régulièrement si des nouvelles données arrivent (5 fois/jour)
- -L'utilisateur final des données n'a rien à gérer:
 - -Le format d'origine, la mise 'bout à bout' des séries

EXTRACT

TRANSFORM

LOAD

5) les moyens d'accès Mode d'accès aux données: DIRECT via SQL


- À partir votre langage de programmation préféré : nécessite de s'intéresser au langage SQL

SELECT b FROM t_data Where id_mesure = 'Debit_entrant' where date > 17/06/2015

Sélectionner les valeurs depuis la table t_data ou id_mesure = Debit_entrant et ou date est > 17/06/2015

C'est la méthode de bas niveau offrant le plus de possibilité dans les requêtes!

Requêtes SQL direct depuis son propre programme

Remplacer vos fonctions de lecture fichier:

- -openfile
- -readLines
- + vos fonctions de sélection

- -read -close
- -Par l'équivalent SQL...en mieux

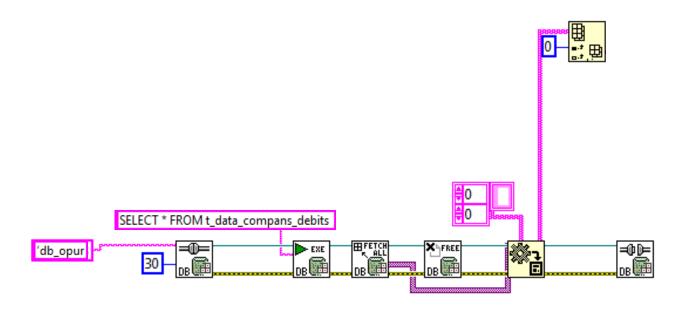
exemple de code

Appel de la bibliothèque	import mysql.connector
Se connecter à la base	conn = mysql.connector.connect(host=data_leesu,user=Id,password=PW, database=db_opur) cursor = conn.cursor()
Lancer la requête SQL	cursor.execute('SELECT * FROM t_data_compans_debits')
Récupérer le résultat	rows = cursor.fetchall()
Fermer la connexion	conn.close()

exemple de code

Appel de la bibliothèque	library(RMySQL)					
Se connecter à la base	mydb = dbConnect(MySQL(), user='user', password='PW', dbname='db_opur', host='data_leesu')					
Lancer la requête SQL	rs = dbSendQuery(mydb, "SELECT * FROM t_data_compans_debits ")					
Récupérer le résultat	data = fetch(rs, n=-1)					
Fermer la connexion	dbDisconnect(mydb)					

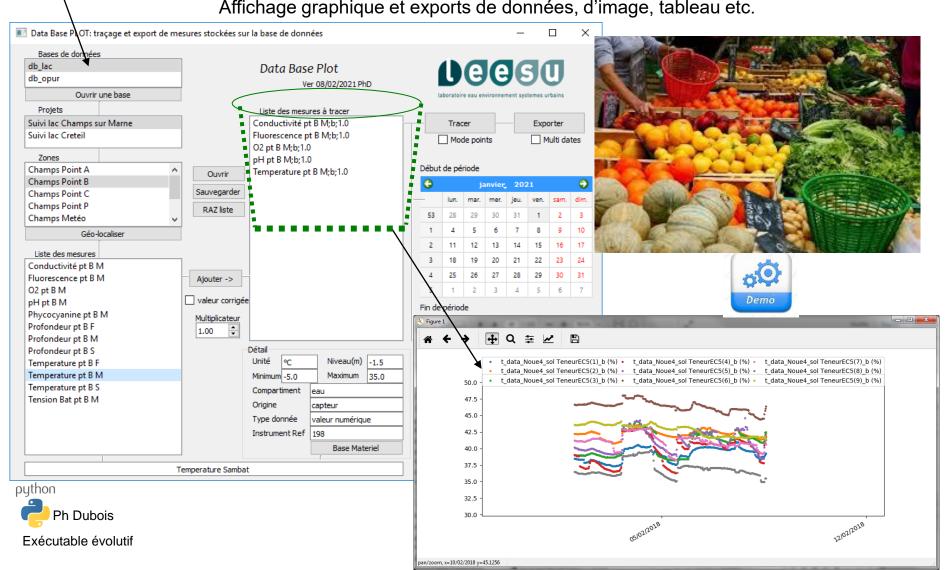
exemple de code



Via DataBAse ToolBox + driver ODBC

Pas d'appel de la bibliothèque	Configurer une connexion via ODBC					
Se connecter à la base	conn = database('MySQL','username','pwd');					
Lancer la requête SQL	data = select(conn, 'SELECT * FROM t_data_debits')					
Récupérer le résultat	Données déjà dans data					
Fermer la connexion	close(conn)					

exemple de code



5) les moyens d'accès

Via une interface 'généraliste' Laboratoire

Affichage graphique et exports de données, d'image, tableau etc.

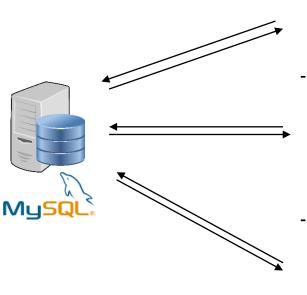
5) les moyens d'accès

Programmes spécialisés, interfaces et web

- à partir d'un soft d'affichage et /ou calculs ,SIG etc

Orange data mining

- depuis une interface d'administration ex: MySQL workbench



- à partir d'une interface web : l'exemple du projet BALNEAU

6) types et flux de données

Différents types de données

- Continu : mesures automatiques horodatées
- Ponctuel : données à fréquence indéterminée
- Séries : tableaux de mesures (ex profiles,3D)
 - -Avec la fonction 'magique': serialise

id_data_type data_type

continu

fichiers

ponctuel

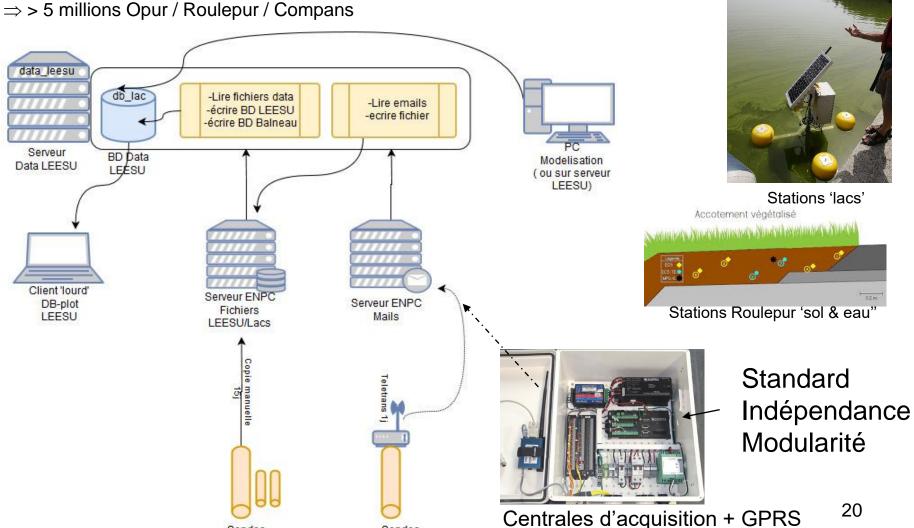
series

textephotos

Des champs réservés à la validation

- bx : données brutes

- cx : données corrigées

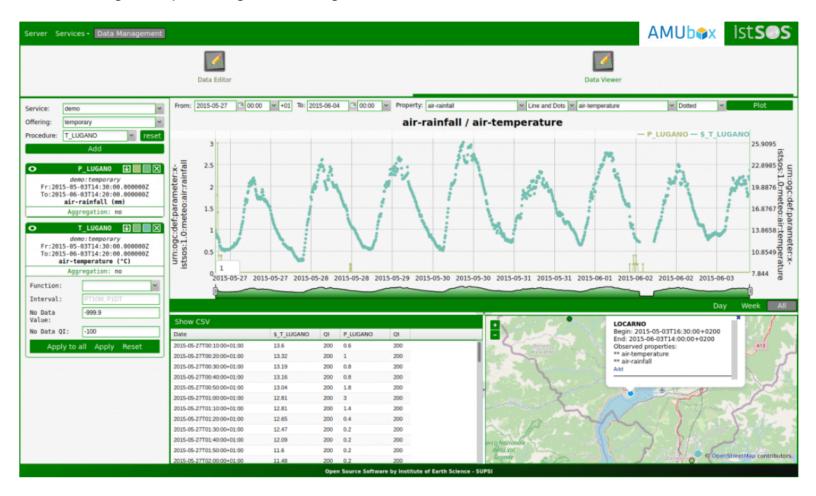

- Ix: indicateur sur correction

		×				
id_data	mesure	date_heure	b	С	i	commentaire
1179695	1	2016-01-26 02:16:09	1.597	NULL	NULL	NULL
1179696	1	2016-01-26 02:21:09	1.596	NULL	NULL	NULL
1179697	1	2016-01-26 02:26:09	1.597	NULL	NULL	NULL
1179698	1	2016-01-26 02:31:09	1.597	NULL	NULL	NULL
1179699	1	2016-01-26 02:36:09	1.596	NULL	NULL	NULL
1179700	1	2016-01-26 02:41:09	1.595	NULL	NULL	NULL
1179701	1	2016-01-26 02:46:09	1.594	NULL	NULL	NULL
1179702	1	2016-01-26 02:51:09	1.593	NULL	NULL	NULL
1			Γ	MIIII	MIIII	NULL

7) types et flux de données

Exemples de flux de donnée automatisé

- -Routine d'ajout automatique des fichiers de mesure en continu dans la base:
- ⇒ > 13 millions de mesures 'en continu' actuellement pour LACs / Champs.

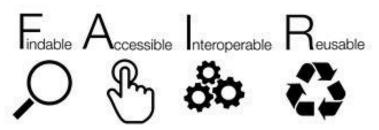

Sondes

Sondes

7) Gestion des données & Ouverture vers l'exterieur

Plate forme web de visualisation

-istSOS Outils générique en ligne : hébergement locale


-Alimentation automatisée à partir de la base 'Data LEESU' selon protocole standard SOS

7) Gestion des données & Ouverture vers l'exterieur Notions connexes

- IOT : Internet Of Things

- Bonnes pratiques

-Directive INSPIRE: INfrastructure for SPacial InfoRmation in Europe

Partage de données sur internet via infrastructure: favoriser la protection de l'environnement

- -Obligations: catalogue, accès gratuit, ...
- -Données: 34 domaines
- -Enjeux: améliorer l'information sur les données, faciliter les échanges de données,...

7) Gestion des données & Ouverture vers l'exterieur

-Alimentation de plates formes d'obervatoires Infrastructures de données spatiales (IDS)

Catalogue de Métadonnées

- -SNO Observil Service National d'observation
 - IDS basé sur GeoSUNA
 - •Regroupe les données de 11 laboratoires/observatoires en France
 - •Données de 4 sites de mesure en continu pour OPUR

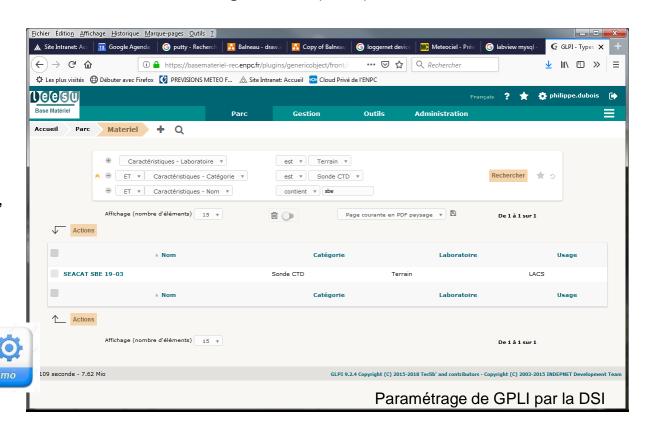
-ZA Seine

- •IDS basé sur GeoNetwork version 3.4.0,
- •un serveur cartographique : GeoServer version 2.12.1

- Source de préparation des méta données / données vers
 - DMP : Data Management Plan
 - Data paper

8) le lien base data -> matériel

La base de donnée 'MATERIELS'


Rôle: https://basemateriel.enpc.fr

- Inventaire de l'existant: => réutilisation, bilan matériel annuel.
- Traçabilité des opérations de maintenance: historique
- Associer des documents: procédures, notices, images etc (8Mo)

- Réservations

Base 'DATA' + Base 'Matériel':

- -Traçabilité
- Lien: le champs 'nom appareil'

