QMRA of alternative urban water resources

Research project Intern: Caroline Kimie Miyazaki Supervisor: Martin Seidl

UNICAMP

BACKGROUND INFORMATION

Environmental Engineering (bachelor degree)

2 years of work experience in water and sanitation projects

UNICAMP

Civil Engineering (masters degree)

Research intern: Urban Risk lab (2021), LEESU (Martin SEIDL) and EDP (Laurent Moulin)

CONTEXT

RESILIENCE

Laboratoire Eau Environnement et Systèmes Urbains

WATER RESOURCES – NON POTABLE USE

Piscine municipale - Ville de Rennes

Source: Ville de Rennes

Source: Composante urbaine

Poste d'épuisement de la RATP

Source: RATP

Rivière Meguro au Japon

Source: A. Tajima, M. Yoshizawa, K. sakurai, M. Minamiyama, establishment of guidelines for the reuse of treated wastewater

Source	Pool water	Rainwater	Mine water	Reclaimed wastewater		
Median volume (m³ /year)	698*10 ³	2,94*10 ⁶	9,83*10 ⁶	352*10 ⁶		
Percentage in relation to the volume of non- potable water distributed	< 1%	4% (discontinuos)	12%	448%		
Quality constraints	Chlore	Bacteria	Condutivity, sulfate	Pathogen		
Source: Adapted from (Trinh 2017)						

RENP

Dual water supply:

- Potable network
- Non-potable
 network

OBJECTIVE

The aims of the present study are to compare the health risk for the rainwater and Paris non-potable network, through the application of QMRA tool. The specific objectives are:

- Identify scenarios exposures for each use;
- Calculate the risk through QMRA steps;
- Compare the scenario for each alternative water resource.

METHOD

QMRA

Quantitative microbial risk assessment:

The critical pathogen reduction level is the Logo reduction that yields a measure of risk equal to the health target

athogen	Greywater	Rainwater	Stormwater	Seepage	Wastewater reuse
Norovirus					
lotavirus					
denovirus					
Enterovirus					
Cryptosporidium					
iardia lamblia					
ampylobacter					
almonella spp					
.Coli					
. pneumophila				minewater	
lycobacterium avium omplex (MAC)					

Fonte: a- (Shi et al. 2018); b- (Gonçalves et al . 2020) ; c- (Ottoson and Stenström 2003); d-(Fiona Barker et al. 2013); e- (Schoen et al. 2 017); f- (Schoen and Garland 2017), g- (Hora et al. 2017), h- (Hamilton et al. 2017); i- (Ahm ed et al. 2010); j- (Fewtrell and Kay 2007); k-(Madera-García et al. 2019); l- (Petterson and Ashbolt 2016); m- (McBride et al. 2013); n- (N RMMC 2006); o- (National Academies of Scie nces 2015); p- (Zhiteneva et al. 2020); q- (Sc hoen et al. 2014)

Use	Greywater	Rainwater	Stormwater	Seepage	Wastewater
					reuse
Toilet flushing					
Food-crop irrigation					
Drinking					
Showering					
Food washing					
Municipal irrigation					
Garden hosing					
Car washing					
Produce consuption					
Clothes washing					
Accidental ingestion					
Playing				minewater	
Fire fighting					
Inhalation of water contaminated				minewater	

Fonte: a- (Shi et al. 2018); b-(Go nçalves et al. 2020); c- (Ottoson and Stenström 2003); d- (Fiona Barker et al. 2013); e- (Schoen e t al. 2017); f- (Schoen and Garla nd 2017); g- (Hora et al. 2017); h- (Hamilton et al. 2017); i-(Ahm ed et al. 2010); j-(Fewtrell and K ay 2007);k- (Madera-García et al . 2019); l- (Petterson and Ashbol t 2016); m- (McBride et al. 2013) ; n-(NRMMC 2006); o- (National Academies of Sciences 2015); p - (Zhiteneva et al. 2020)

Routes of contamination:

• Ingestion route

Dij = Cij * Ving, j

Dij = daily dose of pathogen i for water source j (where j = non-potable network or rainwater) Cij = concentration of pathogen i for water source j

Ving,j = the volume ingested per exposure per event.

Inhalation route

QMRA

$$Dij = \frac{1}{R} * Cij * B * t * \sum_{d=1}^{n} (Caer, d * Vaer, d * DEd)$$

 $\begin{array}{l} \mathsf{B} = \mathsf{breathing rate (m3/min)} \\ \mathsf{t} = \mathsf{exposure duration (min)} \\ \mathsf{Caer},\mathsf{d} = \mathsf{concentration of aerosols of diameter} \\ \mathsf{d} \\ \mathsf{Vaer},\mathsf{d} = \mathsf{volume of each aerosol size (4/3\pi r^3)} \\ \mathsf{DE} = \mathsf{alveolar deposition efficiency of size d.} \end{array}$

• Exponential model:

$$Pe = 1 - exp(-r * dose)$$

• Beta-Poisson model:

$$Pb = 1 - \left(1 + \frac{dose}{\beta}\right)^{-\alpha}$$

e

SU

Two end-point in the literature to mesure the impact:

- Probability of infection
- Disease burden in DALYs

Mortality is not enough to mesure the burden of disease.

Disability-adjusted life year (DALY): combine the years-lost due to premature mortality (YLL) and years of life lost due to disability (YLD)

- Pinf_y is the annual risk of infection
- f is the frequency of exposure in per person per year.
- Pill, y is the annual risk of illness

QMRA

- Pill|inf is the risk of illness given infection
- D is the disease burden in DALYs
- DALYh (DALYs/case) is pathogen-specific burden of disease
- "s" is fraction of population susceptible to be exposed
- h is the reference pathogen

$$P_{ill_y} = P_{inf_y} * P_{ill|inf}$$

 $D = DALYh * P_{ill_y} * s$

Total DALYs = $\sum_{0}^{h} Dh$

Risk characterization:

- Benchmark: Pinf < 10^{-4} pppy or D < 10^{-6} DALY pppy
- Tool R programme

Uncertainty and variability:

- Uncertainty: lack of information
- Variability: elements changing over time and space

Monte Carlo simulation (10 000 runs)

Sensitivity analysis (spearman correlation)

RESULTS AND DISCUSSION

PROBLEM FORMULATION

Target pathogen:

Adenovirus, human norovirus I and II, rotavirus, cryptosporidium, giardia, campylobacter, salmonella, E.Coli (O157:H7), Legionella pneumophila

Pathogen concentration:

Wan's method (assuming normal distribution)

$$\bar{X} \approx \frac{a+2m+b}{4}$$

b = maximum valuea = minimum valuem = median concentration

$$S \approx \frac{b-a}{2\phi^{-1}\left(\frac{n-0.375}{n+0.25}\right)}$$

n = sample size

 ϕ^{-1} = inverse function of the upper zthe percentile of the standard normal distribution

EXPOSURE ASSESSMENT

Use: Municipal irrigation

Scenario	Exposed group	Volume ingested (mL)	Contact exposure (min)	Events per year
A	Pedestrian ingestion/inhalation from spray irrigation	0.1 ª	10 ^b	50 ^{a,b}
В	Ingestion via casual contact with children playing on irrigated grass (frequent hand-to-mouth activity)	4 a	10 ^b	50 ^{a,b}
С	Municipal irrigation worker	1 ^a	60 °	80 °

Sources: a- (NRMMC 2006; Ahmed et al. 2011; Schoen et al. 2017; Hamilton et al. 2017); b- Assumed in the summer time, 4 months (2-3 days of working per week), 10 min per day.; c-Assumed in the summer time, 4 months (5 days of working per week), 1 hour per day.

HEALTH EFFECTS ASSESSMENT

Evaluation

of health effects Risk characterization

Exposure assessment

Problem formulation

Reference pathogen	Representative	Model	Parameter	Values	Units	Reference	Mobidity ratio ^c	Reference
Adenovirus	Adenovirus 4	Exponentiald	r	0.4172		Haas et al., 1999	0.5	Haas et al., 1999
Human	Norwalk virus	Hypergeometric ^a	Alpha	0.04	Genome	(Teunis et al.	0.6	(Soller et al.
norovirus	(GI)		Beta	0.055	copies	2008a)		2017)
Human	(GI & GII.4)	Fractional	Р	0.722	Genome	(Messner et	0.6	(Soller et al.
norovirus		poisson ^b	μ	1106	copies	al. 2014)		2017)
Rotavirus	Rotavirus (CJN	Beta-Poisson	Alpha	0.2531	FFU	(Mitchell et	0.35	(Gerba et
	strain)		Beta	0.4265		al. 2015)		al. 1996; McBride et al. 2013)
Human	Echovirus 12	Beta-Poisson	Alpha	0.401	PFU	(Teunis et al.	0.5	(Teunis et
enteroviruses			Data	007.0		1996)		al. 1996)
Om mate en enisitivos	Omunteenenidiuure	Fractional	Beta	221.2		()	0.00	(DuDant at
Cryptosporialum	spp .	poisson ^f	Р	0.737	oocytys	and Berger 2016)	0.39	(DuPont et al. 1995, p. 199)
Giardia	Giardia lamblia	Exponential	r	0.0199	cytys	(RENDTORF F 1954)	0.5	(Rose et al. 1991)
Campylobacter	Campylobacter	Beta-Poisson	Alpha	0.145	CFU	Haas et al.,	0.16	(Haas et al. 1996)
	jejuni		Beta	7,589		1999		
Salmonella	Non-typhoid	Beta-Poisson	Alpha	0.3126	- CFU	Haas et al.,	1 ^e	Haas et al.,
F 0.1			Beta	2884		1999	4.0	1999
E.COII	E.Coll 0157 :H7	Beta-Poisson	Alpha	0.373	- CFU	(Teunis et al. 2008b)	Je	(Teunis et
			вега	39.71		20000)		ai. 2000)
Legionella pneumophila		Exponential ^d	r	0.000107	CFU	(Armstrong and Haas 2008)	1 ^e	(Armstrong and Haas 2008)

HEALTH EFFECTS ASSESSMENT

Established dose-response models

• Exponential model: P = 1 - ex p(-r * dose)

- Beta-Poisson model: $P = 1 - \left(1 + \frac{dose}{\beta}\right)^{-\alpha}$ • Hypergeometric:
- P (c * V; alfa, beta) = 1 1F1(alfa, alfa + beta; -c * V)
- Fractional poisson:
 P (Dose, P)
 = P * (1 e(-dose/μ))

RISK CHARACTERIZATION

Total disease burden in DALYs for each source

Predictor factor:

- RENP: concentration
 of aerosols diameters
- Rainwater: the concentration of cryptosporidium

UNCERTAINTY ANALYSIS

Pathogen target (concentration of pathogen in Seine river, survival and persistence of microorganism, personal hygiene behavior and personal protective equipment)

• Exposure evaluation based on literature

Model dose-response (not considered susceptible populations, secondary transmission)

CONCLUSION

CONCLUSION

Internship hopes to give the field actor some preliminary knowledge for better decision-making.

Further studies in the field could improve the model

Rainwater source pose less risk than the water from non-potable network

Children exposure is similar to municipal irrigation workers

THANKS!

MERCI!

caroline.kimie-miyazaki@enpc.fr/

cahckm@gmail.com