

Master 2-Systèmes Aquatiques et Gestion de l'Eau (SAGE) Présentée par : **Fayida ALI SAID** Stage encadré par : **Maxime DECHESNE & Gilles VARRAULT**

Présentation du 15 octobre 2021 au Café des sciences du LEESU (Créteil)

École des Ponts ParisTech

Service public de l'assainissement francilien

SOMMAIRE

I- Contexte et enjeux

II-Caractérisation des boues de station d'épuration: méthodologie

III-Résultats et discussion

IV-Conclusion et perspectives

Station Seine Amont (SIAAP), (openagenda.com)

I. Contexte et enjeux

- Loi de transition énergétique pour la croissance verte (août 2015) : réduire l'utilisation des énergies fossiles de 30 % à l'horizon 2030
- Filière de valorisation des déchets : Digestion anaérobie

Digestion anaérobie (ou méthanisation) :

Processus biologique naturel de décomposition de la matière organique (MO), réalisé en anaérobiose par les microorganismes (Moletta and Verstraete, 2008) \rightarrow production de biogaz dont le méthane (CH₄)

Digesteur anaérobie

Réservoir à biogaz (STEU SIAAP Seine amont)

Exemples d'utilisation:

- Chauffage
- électricité
- Production d'énergie renouvelable

I. Contexte et enjeux

Avantages:

- Environnement : diminution des émissions de gaz à effet de serre
- Économie : réduction des quantités de déchet à traiter
- Sociale : réduction des nuisances olfactives

Potentiel méthanogène (BMP) en NmL CH4/gMV:

Quantité maximale (ultime) de méthane que la dégradation anaérobie peut produire dans des conditions d'incubation jugées optimales (d'après Gourdon, 2002)

Mesuré à partir de tests BMP chronophages (30 à 100 jours), par exemple l'AMPTS (Automatic Methane Potential Test System)

I. Contexte et enjeux

Ce projet s'inscrit dans le cadre du programme de recherche MOdélisation Contrôle et Optimisation des Procédés d'Epuration des Eaux (MOCOOPEE):

Utilisation de la spectrométrie proche infrarouge(SPIR) et fluorescence 3D (SF3D) en tant que méthode rapide et peu couteuse pour la caractérisation des boues de station d'épuration des eaux usées (STEU) et autres biodéchets

Paramètre physico-chimique phare suivi: le potentiel méthanogène (BMP) des boues de STEU

1) Origine des boues

*Figure1 :Schéma simplifié des filières de traitement des boues considérées dans cette étude; l'étape d'épaississement est représentée par un **

- Boues en provenance du Service public de l'assainissement francilien (SIAAP)
- Nature des boues:

Boues épaissies (1%<siccité <5%)

- > Typologie et composition se boues:
- Boues physico-chimiques \rightarrow MO et Métaux
- Boues biologiques \rightarrow MO+ microorganismes
- Boues fiabilisées → MO+ Métaux
- Boues mixtes \rightarrow MO +Métaux + microorganismes

Diversité de boues de STEU pour une cartographie complète

2) Stratégie d'échantillonnage

Solution proposée :

- > Analyses en SPIR sur des boues déshydratées à l'étuve (à 70°C pendant 48 heures)
- Analyses en SF3D sur 3 types d'extraits et 2 types de centrâts

Figure 2 : Stratégie d'échantillonnage et devenir des échantillons

2) Stratégie d'échantillonnage

Étude des centrâts = Originalité du projet

La substitution des analyses sur les boues à celles des centrâts est-elle envisageable ?

Avantages à travailler avec les centrâts

- \succ Accessibilité \rightarrow en sortie de centrifugeuse
- Peu de préparation avant analyse en SF3D
- Possibilité d'analyse ou surveillance en ligne

Comment procède-t-on?

- Analyse qualitative et quantitative des deux centrâts de le MO fluorescente dissoutes
- Corrélations simples: paramètres de fluorescence issus du centrât usine avec ceux du centrât labo
- Régressions linéaires multiples: paramètres de fluorescence issus des centrâts avec les paramètres physico-chimique des boues (par exemple le BMP)

2) Stratégie d'échantillonnage: extraction séquentielle sur les boues déshydratées

Figure 3 : Schéma de la procédure d'extraction séquentielle à l'eau ultrapure pour l'analyse en FS3D

Hypothèse:

- En T1: MO facilement biodégradable
- En T2 :MO ayant une affinité intermédiaire avec la phase solide
- En T24 → MO la moins soluble dans l'eau

2) Stratégie d'échantillonnage: extraction séquentielle

Figure 3 : Schéma de la procédure d'extraction séquentielle à l'eau ultrapure pour l'analyse en FS3D

Hypothèse:

- En T1: MO facilement biodégradable
- En T2 :MO ayant une affinité intermédiaire avec la phase solide sera extraite
- En T24 → MO avec carbone le plus réfractaire

Tableau 1: Principaux fluorophores de la matière organique issus de la littérature (Goffin, 2017)

Fluorophores (Parlanti et al., 2000)	Longueur d'onde d'excitation (nm)	Longueur d'onde d'émission (nm)	Type de composés
α΄	230 - 260	380 - 480	Substances type humiques + matériel plus récent
α	330 - 370	420 - 480	Substances type humiques
β	310 - 320	380 - 420	Matériel récent + composante biologique
γ	270 - 280	300 - 320	Tyrosine
δ	270 - 280	320 - 380	Tryptophane

A) Caractérisation quantitative et qualitative de la matière organique dissoute (MOD) fluorescente via la SF3D

Analyse des bandes de fluorescences: Intensité de fluorescence → concentration MOD fluorescente

Rapports de bandes sur Alpha:

- \rightarrow Accès à la nature de la MOD fluorescente
- → Estimation de la proportion MOD type protéinique par rapport à la MOD type humique

Principaux fluorophores de la matière organique issus de la littérature (Goffin, 2017)

Fluorophores (Parlanti et al., 2000)	Longueur d'onde d'excitation (nm)	Longueur d'onde d'émission (nm)	Type de composés		
α΄	230 - 260	380 - 480	Substances type humiques + matériel plus récent		
α	330 - 370	420 - 480	Substances type humiques		
β	310 - 320	380 - 420	Matériel récent + composante biologique		
γ	270 - 280	300 - 320	Tyrosine		
δ	270 - 280	320 - 380	Tryptophane		

- Concentration plus élevée en MO type protéinique qu'en MO type humique
- Proportion de MO protéinique plus élevée
- o Nature de MO différente entre centrât labo et centrât usine
- Similarité entre la nature de MO du centrat labo avec celle des 3 types d'extraits

A) Caractérisation quantitative et qualitative de la matière organique dissoute (MOD) fluorescence via la SF3D

Figure 5: Suivi de l'évolution de la nature de la MO via les rapports de bande de fluorescence sur alpha

Suivi de l'évolution de la nature de la MO extraite via la SF3D

- Diminution rapport de bande gamma/alpha entre T1 et T2 (de 9 à 5 en moyenne) puis légère diminution entre T2 et T24 (5 à 4 en moyenne)
- Stabilité des autres rapports de bandes au cours du temps Hypothèses:
- MO type protéinique facilement extractible
- Stock de MO protéinique épuisé après extraction 1h

B) Caractérisation physico-chimique des boues de STEU via la SF3D

Tableau 2: Récapitulatifs des régressions linéaires multiples pour la prédiction du BMP (avec n=22) avec leurs critères de qualité et fiabilité

	Modèle	e avec vai	riables ex	plicatives issues c	l'un seul type de	Modèle avec variables explicatives issues de plusieurs types d'extraits			
			centra	at ou d'extrait		et/ou centrâts			
Nombre de variables	0 cur 12	11 sur	0 cur 12	0 cur 12	E cur 12	7 cur 17	0 cur 10	E cur 14	2 cur 9
explicatives considérées	9 SUI 12	12	9 SUI 12	9 Sul 12			9 Sur 19	0 Sul 14	5 SUL 8
Origine des variables									
explicatives utilisées dans						Extraits+Centrâts Extraits+Centrâts			
les modèles prédictifs	T1	Т2	T24	centrat labo	centrat usine	usine	labo	Extraits	Centrâts
MCE	2207,75	3259,97	7725,87	13175,88	16144,06	7609,27	4345,44	8027,10	11892,84
R ²	0,97	0,97	0,88	0,72	0,68	0,64	0,82	0,59	0,28
R ² ajusté	0,88	0,82	0,61	0,57	0,56	0,46	0,69	0,43	0,15
Cp de Mallows		11,18	7,07	5,35	2,56	-0,85	1,03	0,69	-0,01
AIC de Akaike	101,03	110,01	127,79	234,39	188,89	202,67	190,96	203,37	210,03
SBC de Schwarz	106,68	117,68	134,18	244,99	194,55	211,40	201,87	211,00	214,39
PC d'Amemiya	0,13	0,18	0,48	0,54	0,53	0,68	0,40	0,70	0,94

B) Caractérisation physico-chimique des boues de STEU via la SF3D

Figure 6 : Ajustement entre le BMP mesuré et le BMP prédit par le modèle utilisant des variables explicatives issues de la SF3D obtenues à partir d'un seul type d'extrait A) extrait T1 B) extrait T2 C) extrait T24 et un seul type de centrat D) centrat labo E) centrat usine (avec n=22)

B) Caractérisation physico-chimique des boues de STEU via la SF3D

	Modèle avec variables explicatives issues d'un seul type de centrat ou d'extrait					Modèle avec variables explicatives issues de plusieurs types d'extraits et/ou centrâts			
Nombre de variables explicatives considérées	9 sur 12	11 sur 12	9 sur 12	9 sur 12	5 sur 12	7 sur 17	9 sur 19	6 sur 14	3 sur 8
Origine des variables									
explicatives utilisées									
dans les modèles	es modèles					Extraits+Centrat Extraits+Centrat			
prédictifs	T1	T2	T24	centrat labo	centrat usine	usine	labo	Extraits	Centrats
MCE	2207,75	3259,97	7725,87	13175,88	16144,06	7609,27	4345,44	8027,10	11892,84
R²	0,97	0,97	0,88	0,72	0,68	0,64	0,82	0,59	0,28
R ² ajusté	0,88	0,82	0,61	0,57	0,56	0,46	0,69	0,43	0,15
Cp de Mallows		11,18	7,07	5,35	2,56	-0,85	1,03	0,69	-0,01
AIC de Akaike	101,03	110,01	127,79	234,39	188,89	202,67	190,96	203,37	210,03
SBC de Schwarz	106,68	117,68	134,18	244,99	194,55	211,40	201,87	211,00	214,39
PC d'Amemiya	0,13	0,18	0,48	0,54	0,53	0,68	0,40	0,70	0,94

- Révision de la méthode de sélection des variables -> sur la base de critères objectifs (tels que sur l'influence de la variable explicative sur la variable expliquée

B) Caractérisation physico-chimique des boues de STEU via la SF3D

Challenge : Caractérisation physicochimique des boues à partir des centrâts obtenus à partir de ces boues

	Modèle avec variables explicatives issues d'un seul type de centr <u>at ou d'extrait</u>					Modèle avec variables explicatives issues de plusieurs types d'extraits et/ou centrâts			
Nombre de variables explicatives considérées	9 sur 12	11 sur 12	9 sur 12	9 sur 12	5 sur 12	7 sur 17	9 sur 19	6 sur 14	3 sur 8
Origine des variables explicatives utilisées dans les modèles prédictifs	т1	TO	T24	contrat Jabo	contrat using	Extraits+Centrat	Extraits+Centrat	Extraite	Contrata
MCF	2207.75	3259.97	7725.87	13175.88	16144.06	7609.27	4345.44	8027.10	11892.84
R ² 0,97 0,97 0,88		0,88	0,72	0,68	0,64	0,82	0,59	0,28	
R ² ajusté	0,88	0,82	0,61	0,57	0,56	0,46	0,69	0,43	0,15
Cp de Mallows		11,18	7,07	5,35	2,56	-0,85	1,03	0,69	-0,01
AIC de Akaike	101,03	110,01	127,79	234,39	188,89	202,67	190,96	203,37	210,03
SBC de Schwarz	106,68	117,68	134,18	244,99	194,55	211,40	201,87	211,00	214,39
PC d'Amemiya	0,13	0,18	0,48	0,54	0,53	0,68	0,40	0,70	0,94

Premiers résultats encourageants :

- Les variables obtenues à partir des 2 centrâts ont permis d'expliquer environ 60% la variance du BMP
- Modèle avec centrât usine \rightarrow 5 variables sur les 12 possibles ont suffi à expliquer environ 60% la variance du BMP

Tets normalité des résidus -> partie essentielle de la variance du BMP est bien expliqué par les variables explicatives du modèle de régression

Test F sur les variances \rightarrow les variables explicatives expliquent bien la variance du BMP

B) Caractérisation physico-chimique des boues de STEU via la SF3D

	Modèles prédictifs des AGV (mg/L) avec n=22								
Nombre de variables explicatives	7 sur 12 11 sur 12		10 sur 12	5 sur 12	3 sur 12				
Origine des variables									
utilisées dans le					centrât				
modèle prédictif	T1	Т2	T24	centrât labo	usine				
MCE	40362,34	18717,86	37485,62	22955,46	24010,86				
R ²	0,59	0,94	0,81	0,84	0,68				
R ² ajusté	0,35	0,82	0,57	0,78	0,62				
Cp de Mallows	5,24	11,74	9,25	-0,15	-3,16				
AIC de Akaike	217,90	170,43	205,67	225,90	205,26				
SBC de Schwarz	225,86	180,43	216,06	232,45	209,25				
PC d'Amemiya	0,82	0,23	0,57	0,26	0,43				

Figure 8: Récapitulatifs des différentes régressions linéaires multiples pour la prédiction des AGV (avec n=22) avec leurs critères de qualité et fiabilité

Figure 8: Modèle prédiction des AGV des boues de STEU (n=22) à partir de paramètres issus de la SF3D A) variables explicatives du centrâts labo B) variables explicatives du centrâts usine

 \succ Ajustement AGV avec variables issues du type T1 \rightarrow mauvaise qualité

B) Caractérisation physico-chimique des boues de STEU via la SF3D

		Modèles prédictifs des AGV (mg/L) avec n=22								
Nombre de variables	7 sur 12	11 sur 12	10 sur 12	5 sur 12	3 sur 12					
explicatives										
Origine des variables										
utilisées dans le					centrât					
modèle prédictif	T1	T2	T24	centrât labo	usine					
MCE	40362,34	18717,86	37485,62	22955,46	24010,86					
R ²	0,59	0,94	0,81	0,84	0,68					
R ² ajusté	0,35	0,82	0,57	0,78	0,62					
Cp de Mallows	5,24	11,74	9,25	-0,15	-3,16					
AIC de Akaike	217,90	170,43	205,67	225,90	205,26					
SBC de Schwarz	225,86	180,43	216,06	232,45	209,25					
PC d'Amemiya	0,82	0,23	0,57	0,26	0,43					

Figure 8: Récapitulatifs des différentes régressions linéaires multiples pour la prédiction des AGV (avec n=22) avec leurs critères de qualité et fiabilité

Figure 8: Modèle prédiction des AGV des boues de STEU (n=22) à partir de paramètres issus de la SF3D A) variables explicatives du centrâts labo B) variables explicatives du centrâts usine

- > Ajustement AGV avec variables issues du type T1 \rightarrow mauvaise qualité
- \succ Ajustement AGV avec variables issues des types T2 et T24 \rightarrow nombre élevé de variables explicatives

B) Caractérisation physico-chimique des boues de STEU via la SF3D

Figure 8: Récapitulatifs des différentes régressions linéaires multiples pour la prédiction des AGV (avec n=22) avec leurs critères de qualité et fiabilité

		Modèles prédictifs des AGV (mg/L) avec n=22								
Nombre de variables explicatives	7 sur 12	11 sur 12	10 sur 12	5 sur 12	3 sur 12					
Origine des variables utilisées dans le modèle prédictif	T1	Т2	Т24	centrât labo	centrât usine					
MCE	40362,34	18717,86	37485,62	22955,46	24010,86					
R ²	0,59	0,94	0,81	0,84	0,68					
R ² ajusté	0,35	0,82	0,57	0,78	0,62					
Cp de Mallows	5,24	11,74	9,25	-0,15	-3,16					
AIC de Akaike	217,90	170,43	205,67	225,90	205,26					
SBC de Schwarz	225,86	180,43	216,06	232,45	209,25					
PC d'Amemiya	0,82	0,23	0,57	0,26	0,43					

Figure 8: Modèle prédiction des AGV des boues de STEU (n=22) à partir de paramètres issus de la SF3D A) variables explicatives du centrâts labo B) variables explicatives du centrâts usine

- \blacktriangleright Ajustement AGV avec variables issues du type T1 \rightarrow mauvaise qualité
- ➢ Ajustement AGV avec variables issues des types T2 et T24 → nombre élevé de variables explicatives

Variables explicatives issues des 2 types de centrâts expliquent plus de 60% de la variance du BMP

IV. Conclusion et perspectives

SF3D à permis une caractérisation:

Physico-chimique de la matière organique fluorescente des boues de STEU

Modèles de prédiction du BMP et ceux de la concentration en AGV expliquent plus de 60% de leur variance La substitution de l'analyse en SF3D sur boues par celles des centrâts semble envisageable, mais reste à confirmer (thèse de Maxime Dechesne).

Une caractérisation qualitative, quantitative
Les boues de STEU ont une proportion plus élevée de MO de type protéinique que de type humique

Perspectives:

Caractérisation plus fine de la MO via l'analyse parallèle factorielle (PARAFAC) Révision de la méthode de sélection des variables pour combinaison, en se basant sur des critères objectifs Combinaison des variables explicatives issue de la SPIR avec celles issus de la SF3D pour un modèle plus robuste

Service public de l'assainissement francilien

Merci pour votre attention !

École des Ponts

ParisTech

Café des sciences du 15 octobre 2021 au LEESU (Créteil)

Par Fayida ALI SAID

26

Bibliographie

Goffin, A., 2017. Potentiel d'utilisation de la spectrométrie de fluorescence 3D pour la caractérisation en ligne de la matière organique dissoute : de la station d'épuration au milieu récepteur. Université Paris-Est-Créteil.

Gourdon, R., 2002. Aide à la définition des déchets dits biodégradables, fermentescibles, méthanisables, compostables (No. 00-00118/1A), RECORD.

Moletta, R., Verstraete, W., 2008. La méthanisation dans la problématique énergétique et environnementale. Editions TEC & DOC.