

Martin.SEIDL@enpc.fr

Update 2021 ENPC, Ecole des Ponts ParisTech LEESU, Laboratoire Eau Environnement et Systèmes Urbains

	Table 1: Structure of Index a	nd Data Used	
	WPI Component Data Used		
	Resources	internal Freshwater Flows	
The Water		external Inflows	
Poverty		population	
Index (WPI)	Access	% population with access to clean water	
captures the		% population with access to sanitation	
characteris-		 % population with access to irrigation adjusted by per capita water resources 	
tics that link	Capacity	ppp per capita income	
water and		under-five mortality rates	
poverty.		education enrolment rates	
		Gini coefficients of income distribution	
	Use	domestic water use in litres per day	
		 share of water use by industry and agriculture adjusted by the sector's share of GDP 	
$\sim \lambda$	Environment	indices of:	
X		water quality	
$\langle \langle \rangle \rangle$		water stress (pollution)	
		 environmental regulation and management 	
		informational capacity	
-X = -X		 biodiversity based on threatened species 	
		www.keele.ac.uk ⁴	

Augmenting supply, options and constraints

- Diverting rivers
- Desalinization
- Virtual water
- Recycling wastewater

Today...

- 1.1 billion people lack access to water
- 2.6 billion people lack access to sanitation
- Inequality is a central part of the story.

Implications for human development

 The lack of water and sanitation leads to diminished opportunities to realize people's capabilities and human potential

Diminished risks and increased opportunities

Handwashing with soap is the single most costeffective health intervention.

Handwashing promotion is cost-effective when compared with other frequently funded health interventions. A \$3 investment in handwashing brings the same health benefits as an \$11 investment in latrine construction, a \$200 investment in household water supply and an investment of \$1000 in immunization.

The water footprint has been developed in analogy to the ecological footprint concept. The 'ecological footprint' of a population represents the area of productive land and aquatic ecosystems required to produce the resources used, and to assimilate the wastes produced, by a population with a specified standard of living. Whereas the 'ecological footprint' shows the area needed to sustain people's living, the 'water footprint' indicates the annual water volume required to sustain a population. The water footprint concept is closely linked to the virtual water concept. Virtual water is defined as the volume of water required to produce a commodity or service.

WWAP 20030

Water footprint

7		-		Wat	er foo	otp	rint				
	Tab	le 2.1. Calculation of the virtual water content of	coffee prode	uced in Brazil with t	he wet production method.						
		Variable	Value	Unit	Source						
	Α	Crop water requirement	1277	mm	CROPWAT						
	в	Yield of fresh cherry	4.22	ton/ha	Calculated from yield of green coffee given by FAO (2003c)						
	С	Virtual water content of fresh cherries	3028	m ³ /ton	C=10×A/B						
	C1	Water use for pulping	7.5	m ³ /ton of fresh cherries	Assumption, based on GTZ (2002b)						
	D	Remaining fraction after pulping	0.44	ton/ton	Bressani (2003), GTZ (2002a)						
	E	Virtual water content of pulped cherries	6899	m ³ /ton	E=(C+C1)/D						
	E1	Water use for soaking and washing	5	m ³ /ton of pulped cherries	The Roast and Post Coffee Company (2003), GTZ (2002b)						
	F	Remaining fraction after fermentation and washing	0.9	ton/ton	Bressani (2003)	Table	4.1. Virtual wate	r content of col	%ee per co	ffee-producing	country.
	G	Virtual water content of wet parchment coffee	7671	m ³ /ton	G = (E+E1)/F				Mield of	Matural curates	Matural water
	н	Remaining fraction after drying	0.506	ton/ton	GTZ (2002c)		Countries	Crop water requirement	green	content of	content of
/	1	Virtual water content dry parchment coffee	15159	m³/ton	I=G/H		Countries	mm	ton/ba	green conee	m ³ /ton
					1				tonina	III /IOII	m /ton
	www.waterfootprint.org					Braz	zil	1277	0.68	18925	22530
						Cold	ombia	893	0.74	12139	14451
						Indo	nesia	1455	0.55	26650	31727
						Viet	nam	938	1.87	5086	6054
						Mex	ico	1122	0.46	24347	28985
		$\sim \gamma$				Gua	temala	1338	0.90	14940	17786
											72

Wat	er footpr	int, v	rirtual w
	Product	Unit	Equivalent water in cubic metres
	Bovine, cattle	head	4,000
	Sheeps and goats	head	500
	Meat bovine fresh	kilogram	15
	Meat sheep fresh	kilogram	10
	Meat poultry fresh	kilogram	6
	Cereals	kilogram	1.5
	Citrus fruit	kilogram	1
	Palm oil	kilogram	2
	Pulses, roots and tubers	kilogram	1
	Source: FAO, 1997b. W	ww.water	footprint.org

Managing Transboundary Waters for Human development

'Anyone who can solve the problems of water will be worthy of two Nobel prizes -one for peace and one for science' John F Kennedy

'Whisky is for drinking, water is for fighting over' Mark Twain 1884

Transboundary

waters

- Water is a source of human interdependence—it is a shared resource serving multiple constituencies within and between countries.
- Water has the potential to fuel wider conflicts but also to act as a bridge for cooperation.
- Two challenges: replacing unilateral action with multilateral cooperation; and putting human development at the centre of trans boundary cooperation.

River basin I	Number of basin countries	Basin countries
Danube	19	Albania, Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Germany, Hungary, Italy, Macedonia, Moldova, Montenegro, Poland, Romania, Serbia, Slovakia, Slove Switzerland, Ukraine
Congo	13	Angola, Burundi, Cameroon, Central African Republic, Congo, Democratic Republic of the Congo, Gabon, Malawi, Rwanda, Sudan, Tanzanla, Uganda, Zambla
Nile	11	Burundi, Central African Republic, Democratic Republic of the Congo, Egypt, Eritrea, Ethiopi Kenya, Rwanda, Sudan, Tanzania, Uganda
Niger	11	Algeria, Benin, Burkina Faso, Cameroon, Chad, Côte d'Ivoire, Guinea, Mall, Niger, Nigeria, Sierra Leone
Amazon	9	Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Suriname, Venezuela and French Guiana
Rhine	9	Austria, Belgium, France, Germany, Italy, Liechtenstein, Luxembourg, Netherlands, Switzerl
Zambezi	9	Angola, Botswana, Democratic Republic of the Congo, Malawi, Mozambique, Namibia, Tanzania, Zambia, Zimbabwe
Lake Chad	8	Algeria, Cameroon, Central Africa Republic, Chad, Libya, Niger, Nigeria, Sudan
Aral Sea	8	Afghanistan, China, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkmenistan, Uzbekistar
Jordan	6	Egypt, Israel, Jordan, Lebanon, Occupied Palestinian Territories, Syria
Mekong	6	Cambodia, China, Lao People's Democratic Republic, Myanmar, Thailand, Viet Nam
Volta	6	Benin, Burkina Faso, Côte d'Ivoire, Ghana, Mali, Togo
Ganges-Brahmaputra- Meghna	6	Bangladesh, Bhutan, China, India, Myanmar, Nepal
Tigris-Euphrates	6	Iran, Iraq, Jordan, Saudi Arabia, Syria, Turkey
Tarim	5 (+1)	Afghanistan, China, Chinese control claimed by India, Kyrgyzstan, Pakistan, Tajikistan
Indus	5	Afghanistan, China, India, Nepal, Pakistan
Neman	5	Belarus, Latvia, Lithuania, Poland, Russia
Vistula	5	Belarus, Czech Republic, Poland, Slovakia, Ukraine
La Plata	5	Argentina, Bolivia, Brazil, Paraguay, Uruguay

Shrinking Lake Chad

Lake Chad, located at the junction of Nigeria, Niger, Chad, and Cameroon was once the 6th largest lake in the world. Persistent droughts have shrunk it to about] a tenth of its former size. The lake has a large drainage basin—1.5 million km² —but almost no water flows in from the dry north. 90% of lake's water flows in from the Chari River. The lakebed is fl at and shallow; even before the drought, the lake was no more than 5-8 m deep. Considered a deep wetland, Lake Chad was once the second largest wetland in Africa, highly productive, and supporting a diversity of wildlife. The lake is very responsive to changes in rainfall. When rains fail, the lake drops rapidly because annual inflow is 20-85 per cent of the lake's volume. Human diversion from the lake and from the Chari River may be significant at times of low flow, but rainfall is still the determining factor in lake level. This image set displays a continued decline in lake surface area from 63 to a meager 304 km² in 2001

WHO www.who.int/water_sanitation_health/ind OMS www.who.int/water_sanitation_health/ind UNESCO www.unesco.org/water/ WWU www.unesco.org/water/ihp/ UNICEF www.unesco.org/water/ihp/ UN Habitat www.unhabitat.org/programmes/wes/weshm. htm UN Habitat www.unhabitat.org/programmes/urbansa nitation/ UNDP www.unep.org/vater/ UNEP www.unep.org/dewa/water/ http://www.unep.org/dewa/water/ http://www.unep.org/dewa/water/				
UNESCO www.unesco.org/water// www.unesco.org/water/ihp/ UNICEF www.unicef.org/programme/wes/weshm. htm UN Habitat www.unhabitat.org/programmes/urbansa nitation/ UNDP www.undp.org/water/ UNEP www.unep.org/dewa/water/ http://www.unep.org/dewa/water/ WNEP www.unep.org/dewa/water/ http://www.unep.org/dewa/water/		WHO OMS	www.who.int/water_sanitation_health/ind ex.htm	
UNICEF www.unicef.org/programme/wes/weshm. UN Habitat www.unhabitat.org/programmes/urbansa nitation/ UN DP www.undp.org/water/ UNEP www.unep.org/vitalwater/ www.unep.org/dewa/water/ http://www.unep.org/dewa/vitalwater/artic Le192.html Le192.html		UNESCO	www.unesco.org/water/ www.unesco.org/water/ihp/	
UN Habitat www.unhabitat.org/programmes/urbansa NDP www.undp.org/water/ UNDP www.undp.org/water/ UNEP www.unep.org/vitalwater/ http://www.unep.org/dewa/water/ http://www.unep.org/dewa/vitalwater/artic le192.html unep.org/dewa/vitalwater/artic	(UNICEF	www.unicef.org/programme/wes/weshm. htm	-
UNDP www.undp.org/water/ UNEP www.unep.org/vitalwater/ www.unep.org/dewa/water/ http://www.unep.org/dewa/water/ http://www.unep.org/dewa/vitalwater/artic le192.html		UN Habitat	www.unhabitat.org/programmes/urbansa nitation/	_
UNEP www.unep.org/vitalwater/ www.unep.org/dewa/water/ http://www.unep.org/dewa/vitalwater/artic le192.html	rited National Educational end Cultural Organization	UNDP	www.undp.org/water/	-
		UNEP	www.unep.org/vitalwater/ www.unep.org/dewa/water/ http://www.unep.org/dewa/vitalwater/artic le192.html	
THE WORLD www.worldbank.org/watsan/home.html		THE WORLD BANK	www.worldbank.org/watsan/home.html	•
Asian dev. Asian dev. Bank www.adb.org/Water/default.asp so	Asian Development Bank	Asian dev. Bank	www.adb.org/Water/default.asp	93

	Univ. Leeds TPHE	www.leeds.ac.uk/civil/ ceri/water/tphe/tphehome.html		
IRC	SANDEC EAWAG Department of Water and Sanitation in Developing Countries	www.sandec.ch/		
	WEDC Water, Engineering & Development Centre at Loughborough University UK	www.wedc.lboro.ac.uk/		
	IRC	www.irc.nl www.irc.nl/source/		
Weiter All	WSSCC Water Supply & Sanitation Collaborative Council	www.wsscc.org		
	WSP Water & Sanitation Program [WB]	www.wsp.org www.smartbrief.com/access/		
	Wateraid	www.wateraid.org.uk		
SEL STOCKHOLM Weber	SEI Stockholm Environment	www.sei.se/water/overview.html		
Propuso	PsEau Programme Solidarité Eau	www.pseau.org/		
	Sanicon	www.sanicon.net		
WEDC		94		